Restorative effects of human neural stem cell grafts on the primate spinal cord

Human neural stem cells transplanted into the injured spines of monkeys matured into nerve cells, spurring neuronal connections and giving the animals an improved ability to grasp an orange, researchers report today (February 26) in Nature Medicine.

 

Ephron S Rosenzweig, John H Brock, Paul Lu, Hiromi Kumamaru, Ernesto A Salegio, Ken Kadoya, Janet L Weber, Justine J Liang, Rod Moseanko, Stephanie Hawbecker, J Russell Huie, Leif A Havton, Yvette S Nout-Lomas, Adam R Ferguson, Michael S Beattie, Jacqueline C Bresnahan, Mark H Tuszynski

 

Received: 03 March 2017

Accepted: 26 January 2018
Published online: 26 February 2018

 

Abstract

 


We grafted human spinal cord–derived neural progenitor cells (NPCs) into sites of cervical spinal cord injury in rhesus monkeys (Macaca mulatta). Under three-drug immunosuppression, grafts survived at least 9 months postinjury and expressed both neuronal and glial markers. Monkey axons regenerated into grafts and formed synapses. Hundreds of thousands of human axons extended out from grafts through monkey white matter and synapsed in distal gray matter. Grafts gradually matured over 9 months and improved forelimb function beginning several months after grafting. These findings in a 'preclinical trial' support translation of NPC graft therapy to humans with the objective of reconstituting both a neuronal and glial milieu in the site of spinal cord injury.

 


Original Article

 

LFLN REF: 06032018, P. 53